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STEP 1 2013 Hints & Solutions 

 
Q1 This question is all about using substitutions to simplify the working required to solve 
various increasingly complicated looking equations. To begin with, you are led gently by the hand 
in (i), where the initial substitution has been given directly to you. You are also reminded that y 

must be non-negative, since x  denotes the positive square-root of x (positive unless x is 0, of 

course). The result is obviously a quadratic equation, 03 2
12  yy , and is solvable by (for 

instance) use of the quadratic formula. However, only one of the apparent solutions,
2

113 
y , 

is positive, so the other is rejected and we proceed to find that 

2

2

311







 
x = 115 2

3 . 

In (ii) (a), the approach used in (i) should lead you to consider the substitution y = 2x , 

which gives the quadratic equation 024102  yy . This, in turn, yields y = 2x  = –12 or 2. 

Again, this must be non-negative, so we find that 22 x  and x = 2.    

In (ii) (b), it should not now be too great a leap of faith to set 382 2  xxy  which, with 

a bit of modest tinkering, yields up 01522  yy   y = 382 2  xx  = –5,  3. Again, y  0, so 

382 2  xx  = 3  (with cancelling) 0642  xx   102 x   104142 x . The 

final step here is to check that both apparent solutions work in the original equation, since the 
squaring process usually creates invalid solutions. [Note that it is actually quite easy to see that both 
solutions are indeed valid, but this still needs to be shown, or otherwise explained. Longer methods 
involving much squaring usually generated four solutions, two of which were not valid.] 
 
 

Q2 The “leading actor” throughout this question is the integer-part function,  x , often referred 

to as the floor-function. Purely as an aside, future STEP candidates may find it beneficial to play 
around with such strange, possibly artificial, kinds of functions as part of their preparation because, 
although they clearly go beyond the scope of standard syllabuses at this level, they are within reach 
and require little more than a willingness to be challenged. [Note that some care needs to be taken 
when exploring such things. In the case of this floor-function, at least a couple of function plotting 
software programs that recognise the “INT” function do so incorrectly for x < 0: for instance, 
interpreting INT(–2.7) as –2 rather than –3.] 

 The key elements of the sketch in (i) are as follows. The jump in the value of  x  whenever 

x hits an integer value means that the graph is composed of lots of “unit” segments, the LH end of 
which is included but not the RH end. The usual convention for signalling these properties is that 
the LH endpoint has a filled-in dot while the RH endpoint has an open dot. Then, in-between 

integer values of x, each segment of the curve is of the form 
x

n
 and thus appears to be a portion of a 

reciprocal curve. 
 The purpose of parts (ii) and (iii) is to see if you can use your graph to decide how to solve 
some otherwise fairly simple equations: the key is to have a clear idea as to where the various 
portions of the graph exist. The analysis looks complicated, but candidates were actually only 



required to pick the appropriate n’s and write down the relevant answers (so the working only 

needed to reflect what was going on “inside one’s head”). Note that, for  1 nxn ,    nx   so 

f(x) = 
x

n
.  Also, 1)(f

1



x

n

n
 for x > 0, and  f(x)  1 for x < 0, so f(x) = 12

7  only in [1, 2), yielding 

the equation 
12

71


x
  in (ii)   x = 7

12 .  

Similarly, 
24

17

1


n

n
   24n > 17n + 17    n > 7

32 , i.e. n  3;  so f(x) = 24
17  only in [1, 2) 

and [2, 3). In [1, 2), 
24

171
)(f 

x
x     x = 17

24  and in [2, 3), 
24

172
)(f 

x
x     x = 17

48 . Next, for   

x < 0,  
1

)(f1



n

n
x , and 

3

4

1




n

n
    –4n – 4 > –3n    n < –4; so f(x) = 3

4  only in [–4, –3), 

[–3, –2),  [–2, –1) and [–1, 0). However, since f(–3) = 1 there is no solution in [–4, –3). Otherwise, 

in [–3, –2),  
3

43
)(f 




x
x   x = 4

9 ; in [–2, –1),  
3

42
)(f 




x
x   x = 2

3 ; and in [–1, 0),  

3

41
)(f 




x
x   x = 4

3 .  

For (iii), 
10

9

1


n

n
 for n > 9 so f(xmax) = 10

9  in [8, 9) and  
10

98
)(f 

x
x     x = 9

80 . 

Only the very last part required any great depth of insight, and the ability to hold one’s 
nerve. The equation f(x) = c  has exactly n roots when the horizontal line y = c cuts the curve that 
number of times. That is … 
 

… when x > 0 : 
2

1

1 



 n

n
c

n

n
; … when x < 0:  

1

1





n

n
c

n

n
,   n  2; … and c  2 for n = 1. 

 
 
Q3 This vector question is tied up with the geometric understanding that, for distinct points with 

position vectors x and y, the point with p.v. x + (1 – )y cuts XY in the ratio (1 – ): (though it is 

important to realise that this point is only between X and Y if 0 <  < 1). Part (i) tests (algebraically) 
the property of commutativity (whether the composition yields different results if the order of the 
application of the operation is changed): 

XY = YX  x + (1 – )y = y + (1 – )x  (2 – 1)(x – y) = 0  (since x  y)   = 2
1 . 

 Part (ii) then explores the property of associativity (whether the outcome is changed when 
the order of the elements involved in two successive operations remains the same but the pairings 
within those successive operations is different). Here we have  

(XY)Z =  (x + (1 –  )y) + (1 – )z =  2x + (1 – )y + (1 – )z 

 and        X(YZ) =  x + (1 – )[y + (1 – )z]  = x + (1 – )y + (1 – )2z 
Thus, (XY)Z – X(YZ) = (1 – )(x – z) and the two are distinct provided   0, 1 or X  Z.
 Part (iii) now explores a version of the property of distributivity (although usually referring 

to two distinct operations): (XY)Z = zyx )1()1(2   , and   
(XZ)(YZ) = [x + (1 –  )z][y + (1 –  )z] = zx )1(2   + zy 2)1()1(     
           = zyx )1()1(2   , and the two are always equal. 

Next, X(YZ) = zyx 2)1()1(   , and  



(XY)(XZ) = [x + (1 –  )y][x + (1 –  )z] 

            = yx )1(2   + zx 2)1()1(    

            = zyx )1()1(2   . 

Hence  X(YZ) = (XY)(XZ) also. 

In (iv), you will notice that the condition 0 <  < 1 comes into play, so that P1 cuts XY 

internally in the ratio (1 – ):. Following this process through a couple more steps shows us that 

Pn cuts XY in the ratio (1 – n):n , which is easily established inductively. 
 
 
Q4 The first part to this question involved two integrals which can readily be integrated by 
“recognition”, upon spotting that  

  xxx
x

2sec)(tanf)(tanf
d

d
  and   xxxx

x
tansec)(secf)(secf

d

d
 . 

(They can, of course be integrated using suitable substitutions, etc.) Thus, we have 

 xxn 2sec.tan  dx = 






 x

n
n 1  tan

1

1
 = 

1

1

n
 

and  xxn tan.sec  dx =   xxxn tansec.sec 1   dx = 





x
n

nsec
1

 = 
 

n

n
12 

. 

The two integrals in part (ii) can be approached in many different ways – the examiners 
worked out more than 25 slightly different approaches, depending upon how, and when, one used 
the identity sec2x = 1 + tan2x, how one split the “parts” in the process of “integrating by parts”, and 
even whether one approached the various secondary integrals that arose as a function of  sec x  or  
tan x. Only one of these approaches appears below for each of these two integrals.. 


4/

0

4 tansec


xxx dx = 
0

4/4

4

sec
 . 










 x
x – 

4/

0

4

4

sec x
dx  (by parts) = J

4

1
  

4



, where J = 

4/

0

4sec


x  dx. 

Then, J = 
4/

0

2sec


x  dx + 
4/

0

22 tansec


xx  dx =  xx 3
3
1 tantan   = 

3

4
, and our integral is 

3

1

4



.  

Next,   xxx tan.sec22 dx =  xx 2
2
12 tan .  –  xx 2

2
1 tan . 2 dx (by parts) =    1sec

32
2

2

xx


 

            =  xK
32

2
dx,  where  K = 

4/

0

2sec


xx  dx. 

Then, K =  xx tan .   –  xtan  dx = x tan x – ln(sec x) = 2ln
2

1

4



, so that this last integral is  

32

2
 – 






  2ln

2

1

4


+ 

32

2
 or 

16

2
2ln

2

1

4



. 

 
 
 
 
Q5 This question simply explores the different possibilities that arise when considering curves 
of a particular quadratic form. In (i), with a zero product term, we have equal amounts of x2 and y2, 



and this is symptomatic of a circle’s equation: 03 22  yyxx       22
12

2
12

2
3 10 yx , 

which is a circle with centre  2
1

2
3  ,   and radius 102

1 . This circle passes through the points (0, 0), 

(0, –1) & (–3, 0).  

 In (ii), with k = 3
10 , we have    0333  yxyx . This factorisation tells us that we have 

the line-pair y = –3x & x + 3y = –3; the first line passing through the origin with negative gradient, 
while the second cuts the coordinate axes at (0, –1) and (–3, 0). 
 Part (iii) is the genuinely tough part of the question, but help is given to point you in the 

right direction.  When k = 2, we have   032  yxyx , and using  = 45o in the given 

substitution gives 2Xyx   and 2Yxy   
2

YX
x


  and 

2

YX
y


 . Then 

   032  yxyx  becomes 0
22

33
2 2 







YXYX
X   2222 2 YXX   or  

  2112
2

YX  . This is now in what should be a familiar form for a parabola, with axis of 

symmetry
2

1
X   (substituting back) 

2

1

2




 yx
  i.e.  1 yx . For the sketch, we must 

rotate the standard parabola through 45o anticlockwise about O in order to get the original parabola 

032 22  yxyxyx . 

 For those who have encountered such things, all three curves here are examples of conic 
sections.  
 
 
Q6 It should be pretty clear that this question is all about binomial coefficients. The opening 
result – the well-known Pascal Triangle formula for generating one row’s entries from those of the 
previous row – is reasonably standard and can be established in any one of several ways. The one 

intended here was as follows: the coefficient of  xr  in (1 + x)n + 1  is  






 
r

n 1
, and this is obtained 

from (1 + x)(1 + x)n, where the coefficient of  xr  comes from 

  



























     .....
1

.....  1 1  rr x
r

n
x

r

n
x  

and the required result follows. 
 In the next stage, for n even, write n = 2m so that 

B2m + B2m + 1 =                  


























 








 









m

m

m

mmmm

1

1
.....

2

22
  

1

12
   

0

2
   

   + 






 








 








 

















 
m

mmmmm 1
.....

3

22

2

12
  

1

2

0

12
. 

and, pairing these terms suitably, this is 

























 



























 








 


































 
m

m

m

m

m

mmmmmm
   

1

1

1
.....

2

12
  

1

12
  

1

2

0

2

0

12
. 

Now, using the opening result, and the fact that 1
1

1
  

0

22

0

12




























 








 
m

m

m

mmm
, we have 



 

























 

































 








 
1

1
        

2
            .....              

2

2
                 

1

12
      

0

22

m

m

m

mmmm
, 

 and this is just 










 1

0

  

  

)1(2
 

m

j j

jm
 = B2m + 2, as required. 

In the case n odd, write  n = 2m + 1, so that        

B2m + 1 + B2m + 2 =             






 



















 

















 
m

m

m

mmmm 1

1

2
.....

2

12
  

1

2
   

0

12
    

              + 

















 








 

















 








 
1

12
.....

3

12

2

2
  

1

12

0

22

m

m

m

mmmmm

 
 

which gives, upon pairing terms suitably,  

 
1

112

1

2
.....

2

2
  

1

2
  

1

12

0

12

0

22


























 
















 





















































 








 








 
m

m

m

m

m

m

m

mmmmmm

= 
























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using the opening result and the fact that 1
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 = B2m + 3.       

 
To complete an inductive proof, we must also check that the starting terms match up properly, but 
this is fairly straightforward. We conclude that, since B0 = F1 ,  B1 = F2  and  Bn & Fn  satisfy the 
same recurrence relation, we must have  Bn = Fn + 1  for all n. 
 
 
Q7 In (i), there is a generous tip given to help you on your way with this question. Starting from 

y = ux we have 
x

u
xu

x

y

d

d

d

d
 , so that the given differential equation becomes u

ux

u
xu 

1

d

d
 or

  x
x

uu d 
1

d  upon separation of variables. You are now in much more familiar territory and may 

proceed in the standard way: Cx
x

y
u  ln

2 2

2
2

2
1   Cxxy 2ln222  . Using the given 

conditions x = 1, y = 2 to determine C = 2 then gives the required answer 4ln2  xxy . 

However, there is one small detail still required, namely to justify the taking of the positive square-
root, which follows from the fact that y > 0 when x = 1. (Note that you were given  x > e – 2 , for the 
validity of the square-rooting to stand, so it is not necessary to justify this. However, it should serve 
as a hint that a similar justification may be required in the later parts of the question.) 
  In (ii), either of the substitutions y = ux or y = ux2 could be used to solve this second 
differential equation. In each case, the method then follows that of part (i)’s solution very closely 
indeed; separating variables, integrating, eliminating u and substituting in the condition x = 1, y = 2 
to evaluate the arbitrary constant. The final steps require a justifying of the taking of the positive 
square-root and a statement of the appropriate condition on x in order to render the square-rooting a 

valid thing to do. The answer is 15 2  xxy  for  x > 
5

1 .  



 In (iii), only the substitution y = ux2 can be used to get a variable-separable differential 

equation, which boils down to   x
x

uu d 
1

d 
2

  D
x

u 


  
12

2
1 . Using x = 1, y = 2 (u = 2) to 

evaluate the constant D leads to the answer xxxy 26 2    for  x > 3
1 . 

 
 
Q8 This question is all about composition of functions and their associated domains and ranges. 
Whilst being essentially a very simple question, there is a lot of scope for minor oversights. One 

particular pitfall is to think that xx 2 , when it is actually | x |. Also, when considering the 

composite function fg, it is essential that the domain of g (the function that “acts” first on x) is 
chosen so that the output values from it are suitable input values for f. You should check that this is 
so for the four composites required in part (i). 
 In (ii), the functions fg and gf look the same (both are | x |) but their domains and ranges are 

different: fg has domain ℝ and range y  0, while the second has domain | x |  1 and range y  1. 

 In (iii), the essentials of the graph of h are: it starts from (1, 1) and increases. Since 12 x  

is just (x – a tiny bit) after a while, the graph of h approaches y = 2x from below. Using similar 
reasoning, the graph of k for x ≥ 1, also starts at (1, 1) but decreases asymptotically to zero. (It is 

well worth noting that 12  xx  is the reciprocal of 12  xx , since their product is 1.) 

However, this second graph has a second branch for x  –1, which is easily seen to be a rotation 
about O (through 180o) of the single branch of h, this time approaching y = 2x from above. Finally, 

note that the domain of kh is x  1, and since the range of h is y  1, the range of kh is 0 < y  1.  
 
 
Q9 This question incorporates the topics of collisions and projectiles, each of which consists of 
several well-known and oft quoted results. However, much of the algebraic processing can be 
shortcut by a few insightful observations. To begin with, if the two particles start together at ground 
level and also meet at their highest points, then they must have the same vertical components of 
velocity. Thus  sinsin vu  . Then, if they both return to their respective points of projection, the 

collision must have ensured that they both left the collision with the same horizontal velocity as 

when they arrived; giving, by Conservation of Linear Momentum, that mucos = Mvcos. Dividing 

these two results gives the required answer, m cot = M cot. 

 The collision occurs when 
g

v

g

u
t

 sinsin
 (from the standard constant-acceleration 

formulae) and at the point when A has travelled a distance b = 
g

u  cossin2

  and B has travelled a 

distance )cos)(sin(
1cossin2


vv

gg

v
 , the sum of these two distances being denoted d. 

Substituting for the brackets using the two initial results then gives 
Mm

Md
b


 , as required. 

Moreover, the height of the two particles at the collision is given by y = 
g

u

2

sin 22 
, so that  



h = 



cos

sincossin

2

1 2


g

u
= tan2

1 b . 

 
 
Q10 This question makes more obvious use of the standard results for collisions, but also ties 
them up with Newton’s 2nd Law (N2L) of motion and, implicitly, the Friction Law and resolution 
of forces (in the simplest possible form). Thus, if R is the normal contact reaction force of floor on 
puck, F the frictional resistance between floor and puck, we have (in very quick order) the results   

R = mg, F = R = mg and, by N2L, mg = –ma, where a is the puck’s acceleration. The constant-

acceleration formula v2 = u2 – 2as then gives gdvw ii 222
1    (where vi  is the speed of the puck 

when leaving the i-th barrier, for i = 0, 1, 2, …, and wi  is its speed when arriving at the i-th barrier, 
for i = 1, 2, 3, …). Also, Newton’s (Experimental) Law of Restitution (NEL or NLR) gives 

1  1  .   ii wrv , from which it follows that gdrvrv ii 2222
1  2 , as required. 

Iterating with this result, starting with gdrvrv 2222
1 2 , then leads to the general result 

 2  2422222 ...12  nn
n rrrgdrvrv  . The large bracket is the sum-to-n-terms of a GP, 

namely 
2

2

1

1

r

r n




, and you simply need to set vn = 0 and tidy up in order to obtain the result  

nr
gd

v 2
2

 
2

 
2

22

1

1

r

rr n




. 

Replacing 
gd

v

2

2

 by k and re-writing the expression for r2n  









22

2

1 rkr

r
, we simply have to 

take logs and solve for n to get n = 
 
r

rkr

r

ln2

1
ln

22

2











. Setting  r = e – 1  in this result, and tidying 

up, then gives n =   1e1ln 2
2
1  k . 

When r = 1, the distance travelled is just nd, and we have v2 = 2 gnd and k
gd

v
n 

2

2

. 

  

Q11 Since we are told that  +  < 2
1 , the two tensions  T sin  and  T cos  are effectively 

components of a notional force (T), inclined slightly to the right of the normal contact reaction force 
R, say. Hence, if there is motion, it will take place to the right. Then, resolving vertically and 
horizontally for the block, calling the frictional force (acting to the left) F, we have  

R + T sin cos  + T cos sin  = W and F + T sin sin  = T cos cos 

or, using trig. identities, W = R + T sin( + ) and F = T cos( + ). Since W > T sin( + ), it 

follows that R > 0 so the block does not rise. Otherwise, F ≤  R and using  = tan for equilibrium, 

we have T cos( + ) ≤ tan  )sin(  TW  i.e.  W tan  ≥ T tan sin( + ) + T cos( + )              

  W sin  ≥ T sin sin( + ) + T cos( + ) cos = T cos( +  –  ).       
 
 In the next part, W = T tan )(2

1       R = T sin )(2
1    – T sin( + ) < 0 so  R = 0 

(and F = 0) as the block lifts from ground. Taking unit vectors i and j in the directions  and  



respectively: TA = 



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T
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T
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
 )(tan

0

2
1 T

, and the 

resultant force on the block is TA + TB +W = 










)(tan)sin(

)cos(

2
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T
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(relative to i). Since  +  = 2 , this is the direction 
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1 , noting that )cos(1)(cos2 2
12   . 

 
 
Q12  As with all such probability questions, there are many ways to approach the problem. The 
one shown here for part (i) is one that generalises well to later parts of the question. Suppose the 

container has 3R, 3B, 3G tablets. Then the probability is 
56

3

7

3

8

3

9

3
  for one specified order (e.g. 

RBG). We then multiply by 3! = 6 for the number of permutations of the 3 colours to get
28

9
. The 

final part of (i) is really a test of whether you realiuse that this is the same situation viewed “in 
reverse”, so the answer is the same. 

Using the method above, with a suitable notation, in part (ii) we have 

  P3(n) = ! 3
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Then in (iii), P(correct tablet on each of the n days) = P2(n)P2(n – 1)P2(n – 2) … P2(2)P2(1)   
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Q13 First, note that x  {0, 1, 2, 3}, so there are four probabilities to work out (actually, three, 
and the fourth follows by subtraction from 1). The easier ones to calculate are X = 0 and X = 3, so 
let us find these first. 

For P(X = 0): the 7 pairs from which a singleton can be chosen can be done in 26C7 ways; 

then, we can choose one from each pair in 27 ways; so that P(X = 0) = 
7

52

7
7

26

C

2C 
.  



Now 26C7 = 
1.2.3.4.5.6.7

20.21.22.23.24.25.26
& 52C7 = 

1.2.3.4.5.6.7

46.47.48.49.50.51.52
 P(X = 0) = 

5593

3520
. 

P(X = 3): the 3 pairs from 26 can be chosen in 26C3 ways; then the one singleton from the 
remaining 23 pairs can be chosen in 23C1 = 23 ways, and the one from that pair in 21 ways ; so that 

P(X = 3) = 
7

52

1
1

23
3

26

C

2CC 
 = 

5593

5
 (similarly for calculation).  

 For P(X = 1): the 1 pair can be chosen in 26C1 = 26 ways; the 5 pairs from which a singleton 
is chosen can be done in  25C5  ways; and the singletons from those pairs in 25 ways; so that 

P(X = 1) = 
7

52

5
5

25

C

2C26 
= 

5593

1848
. 

For P(X = 2): the 2 pairs can be chosen in 26C2  ways; then the 3 pairs from which a 
singleton is chosen can be done in  24C3  ways; and the singletons from those pairs can be chosen in 

23 ways; so that P(X = 2) = 
7

52

3
3

24
2

26

C

2CC 
= 

5593

220
.  

 Then E(X) = )(p . xx  =  5322021848135200
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STEP 2 2013 Hints and Solutions 

Question 1. 

The gradient of a line from a general point on the curve to the origin can be calculated easily and the 

gradient of the curve at a general point can be found by differentiation. Setting these two things to 

be equal will then lead to the correct value of  . A similar consideration of gradients to the origin 

will establish the second result and if the line intersects the curve twice then a sketch will illustrate 

that there must be one intersection on each side of the point of contact found in the first case. A 

similar process will establish the result for part (ii).  

For part (iii) the gradient of the line must be smaller than the gradient of the line through the origin 

which touches the curve, so the intersection with the y-axis must be at a positive value. This means 

that the conditions of part (ii) are met, which allows for the comparison between    and    to be 

made. 

The condition given in part (iv) is equivalent to stating that the line is parallel to the one found at the 

very beginning of the question. This implies that the intersection with the y-axis is at a negative 

value and so an adjustment to the steps taken in part (ii) will establish the required result. 

Question 2. 

The obvious substitution in the first part leads easily to the required result. It should then be easy to 

establish the second result by making the integral into the sum of two integrals and noting that 

taking out a common factor leaves (   )    to be simplified. Integration by parts will lead to the 

next result after which taking out one of the factors of (   ) will allow the integral to be split into 

a difference of two integrals. 

The result in part (ii) is most easily proved by induction. It is necessary to fill in the gap in the 

factorial on the denominator by multiplying both the numerator and denominator by the missing 

even number. In alternative approaches, it needs to be remembered that the product of the even 

numbers up to and including    can be written as      

The final part is a straightforward substitution, although care needs to be taken with the signs. The 

final result can be obtained using the relationship established in part (i) as none of the reasoning 

requires    to be an integer. 

  



Question 3. 

For it to be possible for the cubic to have three real roots it must have two stationary points. Since 

the coefficient of    is positive it must have a specific shape. A sketch will show that only the two 

cases given will result in an intercept with the y-axis at a negative value. 

In order for the cubic in part (ii) to have three positive roots, both of the turning points must be at 

positive values of  . Differentiation will allow most of the results to be established. The condition 

that     is needed to ensure that the leftmost root is also positive. 

The condition      implies that there must be a turning point at a positive value of  . The shape 

of the graph is as in part (i), but this time the intersection with the y-axis is at a positive value. This is 

sufficient to deduce the signs of the roots. 

For part (iv) it is easiest to note that changing the value of   does not (as long as   remains negative) 

change whether or not the conditions of (*) are met. As this represents a vertical translation of the 

graph any example of a case satisfying (*) can be used to create an answer for this part by 

translating the graph sufficiently far downwards. 

Question 4. 

The equations of the line and circle are easily found and so the second point of intersection (and so 

the coordinates of M) can be easily found. The two parts of this question then involve regarding the 

coordinates of M as parametric equations. 

In part (i)   is the parameter and is restricted so that the point that the line passes through is inside 

the circle. This gives a straight line between the points which result from the cases      and 

   . The length of this line can be determined easily from the coordinates of its endpoints. 

In part (ii) it is again quite easy to eliminate the parameter from the pair of equations and the shapes 

of the loci should be easily recognised. In part (b) however, the restriction on the values of   need to 

be considered as the locus is not the whole shape that would be identified from the equation. 

  



Question5. 

Simple applications of the chain rule lead to relationships that will allow the three cases of zero 

gradients to be identified in part (i). 

In part (ii) the relationships follow easily from substitution and therefore the three stationary points 

identified in part (i) must all exist. By considering the denominator there are clearly two vertical 

asymptotes and the numerator is clearly always positive. Additionally, the numerator is much larger 

than the denominator for large values of  . Given this information there is only one possible shape 

for the graph. 

In part (iii) the solutions of the first equation will already have been discovered when the 

coordinates of the stationary points in part (ii) were calculated. The range of values satisfying the 

first inequality should therefore be straightforward. One of the solutions of the second equation 

should be easy to spot, and consideration of the graph shows that there must be a total of six roots. 

Applying the two relationships about the values of   will allow these other roots to be found. The 

solution set for the inequality then follows easily from consideration of the graph. 

Question 6. 

The definition of the sequence can be used to find a relationship between      and    and 

therefore also a relationship between    and     . Taking the difference of these then leads to the 

required result. 

It is clear from the definition of the sequence that, if one term is between 1 and 2, then the next 

term will also be between 1 and 2. This is then easy to present in the form of a proof by induction for 

part (ii). 

The result of part (i) shows that the sequence in part (iii) is increasing and the result proved in part 

(ii) shows that it is bounded above. The theorem provided at the start of the question therefore 

shows that the sequence converges. Similarly the second sequence is bounded below and 

decreasing (and therefore if the terms are all multiplied by -1 a sequence will be generated which is 

bounded above and increasing). Therefore the second sequence also converges to a limit. 

The relationship between    and      established in part (i) can then be used to find the value of 

this limit and, as it is the same for both the odd terms and the even terms, the sequence must tend 

to the same limit as well. 

Finally, starting the sequence at 3 will still lead to the same conclusion as the next term will be 

between 1 and 2 and all further terms will also be within that range, so all of the arguments will still 

hold for this new sequence. 

  



Question 7. 

A solution of the equation should be easy to spot and a simple substitution will establish the new 

solution that can be generated from an existing one. This therefore allows two further solutions to 

be found easily by repeated application of this result. 

In part (ii) write        and      and then substitute into (*). With some simplification the 

required relationship will be established. 

Since   is a prime number there is only two ways in which it can be split into a product of two 

numbers (     and     ). The right hand side of the equation is clearly a difference of two 

squares and therefore a pair of simultaneous equations can be solved to give expressions for   and 

  . Finally, the expression for    is similar to the relationship established in part (ii), so solutions to 

the original equation can be used to generate values of  ,   and   which satisfy this equation. 

Question 8. 

Begin by calculating the largest area of a rectangle with a given width and then maximize this 

function as the width of the rectangle is varied. The definition of     can be reached by setting the 

derivative of the area function to 0. 

The definition of   involves the differentiation of an integral of   which uses the variable   as the 

upper limit. The derivative of   ( ) is therefore  ( ). The next statement relates the area bounded 

by the curve and the line    ( ) with the area of the largest rectangle with edges parallel to the 

axes that can fit into that space, so the first area must be greater and since that integral is equal to 

  ( )    ( ) the result that follows is easily deduced. 

The final part of the question involves finding expressions for   ( ) and  ( ) and then simplifying 

the relationship established at the end of part (ii). 

Question 9. 

Resolving the forces vertically will establish the first result. For the second part of the question it can 

be established that all of the frictional forces are equal in magnitude by taking moments about the 

centre of one of the discs. Resolving forces vertically and horizontally for the discs individually will 

then lead to simultaneous equations that can be solved for the magnitudes of the reaction and 

frictional forces. 

Since the discs cannot overlap there is a minimum value that   can take and the value of 
    

      
 is 

increasing as   increases. This allows the smallest possible value of the frictional force between the 

discs to be calculated and therefore it can be deduced that no equilibrium is possible if the 

coefficient of friction is below this minimum value. 

  



Question 10. 

Following the usual methods of considering horizontal and vertical parts of the motion will lead to 

the first result (some additional variables will need to be used, but they will cancel out to reach the 

final result. 

If   and   are the same point then the result in part (i) can be applied for this point which will give 

an equation which is easily solved to give       once the double angle formula has been applied. 

For the final part it is possible to find the times at which the particle reaches each of the two points. 

The two equations reached can then be used to find an expression for the difference between the 

time at which the particle reaches each of the two points and then it can easily be deduced whether 

this is positive or negative, which will show which point is reached first. 

Question 11. 

The standard methods of conservation of momentum and the law of restitution will allow the 

speeds after the second collision to be deduced. A third collision would have to be between the first 

and second particles and this will only happen if the velocity of the first particle is greater than that 

of the second one. 

Providing a good notation is chosen to avoid too much confusion, it is possible to find the velocities 

after the third collision and then consider the velocities of the second and third particles to 

determine whether or not there is a fourth collision. 

Question 12. 

 The formula for the expectation of a random variable should be well known and both of the 

expectations can easily be written in terms of   and  . 

Similarly, the formula for variance should be well known and so it is a matter of rearranging the 

sums in such a way as to reach the forms given in the question. Note that the definitions of   and   

are such that       . 

Since the    (   )     ( ) the equation in the final part of the question can be rewritten in 

terms of the variables defined at the start of the question. It can then be shown that this is not 

possible for any non-zero value of  . 

 

  



Question 13. 

An alternating run of length 1 must be two results showing the same side of the coin. It is then easy 

to show that the probability is as given. Similarly a straight run of length 1 must be two different 

results (in either order) and so the probability can again be calculated easily. The terms involved are 

those in the expansion of (   )  and so starting with the statement that (   )    then 

relationship between the two probabilities can be established. 

An alternating run of length 2 must be one result followed by the other one twice, while a straight 

run of length 2 must be two identical results followed by the other one. They will therefore be 

calculated by the same sums (with the products in a different order each time) so the probabilities 

must be equal. By considering the ways in which runs of length 3 can be obtained it is clear that 

these two probabilities must also be equal. 

An alternating run of length    must be   of each of the two possibilities followed by a repeat of 

whichever came last. A straight run of length    must be    of one of the possibilities followed by 1 

of the other. Taking the difference between these two probabilities gives an expression which can be 

seen to always have the same sign, which will determine which probability is greater. A similar 

method will also work for the final case. 



STEP 3 2013 Hints and Solutions 

1.  The first two results, whilst not necessarily included in current A2 specifications, are 

standard work.  Applying them,  ׬
ଵ

ଵା௔ ୱ୧୬ ௫
ݔ݀		 ൌ ׬2

ଵ

ሺଵି௔మሻାሺ௧ା௔ሻమ
ݐ݀

ଵ
଴

భ
మ
గ

଴   , which can then be 

evaluated using a change of variable to give  
ଶ

√ଵି௔మ
	ቀtanିଵ

ଵା௔

√ଵି௔మ
െ	tanିଵ

௔

√ଵି௔మ
ቁ .  To simplify this to 

obtain the required result,  tan 	ቀtanିଵ
ଵା௔

√ଵି௔మ
െ	tanିଵ

௔

√ଵି௔మ
ቁ must be simplified using the relevant 

compound angle formula. 

It is fairly straightforward to show that   ܫ௡ାଵ ൅ ௡ܫ2 ൌ ׬ sin௡ ݔ ݔ݀
భ
మ
గ

଴  , so applying this for  ݊ ൌ 2, 1, 0  

and applying the main result of the question to evaluate ܫ଴ , gives  ܫଷ ൌ ቀଽ
ସ
െ

଼√ଷ

ଽ
ቁ ߨ െ 2 

2.  It is elegant to multiply by the denominator, then differentiate implicitly, and finally multiply 

by the same factor again to achieve the desired first result.  The general result can be proved by then 

using induction, or by Leibnitz, if known.  The general result can be used alongside the expression for  

ݔ and the first derived result with the substitution ,ݕ ൌ 0  to show that the general term of the 

Maclaurin series for even powers of x is zero, and for odd powers of x is  
ଶమೝሺ௥!ሻమ

ሺଶ௥ାଵሻ!
  ଶ௥ାଵ .  Thus, asݔ	

ݕ ൌ ݔ ൅
ଶమ

ଷ!
ଷݔ ൅

ସమଶమ

ହ!
ହݔ ൅ ⋯ the required infinite sum is  

௬

௫
  with  ݔ ൌ

ଵ

ଶ
  , that is 

ଶగ√ଷ

ଽ
 . 

3.  The scalar product of  ݌௜  with  ∑݌௥ , which is of course zero, can be expanded giving  
.௜݌ ௜݌ ൌ 1  and three products  ݌௜. ௝݌  which are equal by symmetry, giving the required result.  

Expanding the expression suggested in (i), gives  ∑ ሺ݌௜. ௜݌ െ .ݔ2 ௜݌ ൅ .ݔ ሻସݔ
௜ୀଵ  , which, bearing in mind 

that  ݌௜. ௜݌ ൌ .ݔ  , 1 ݔ ൌ 1 , and that  ݔ. ∑ ௜݌ ൌ 0ସ
௜ୀଵ  , gives the correct result.  Considering that  

.ଵ݌ ଶ݌ ൌ െ
ଵ

ଷ
.ଶ݌  ,  ଶ݌ ൌ 1 , and that  a is positive, enables the given values to be found.  Similarly  

.ଵ݌ ଷ݌ ൌ െ
ଵ

ଷ
.ଶ݌  ,  ଷ݌ ൌ െ

ଵ

ଷ
 ,  and  ݌ଷ. ଷ݌ ൌ 1  yields   ଷܲ, ସܲ ൌ ቀെ √ଶ

ଷ
, േ √ଶ

√ଷ
, െ

ଵ

ଷ
ቁ .  In (iii), using the 

logic of (i), ሺܺ ௜ܲሻସ ൌ ൫ሺ݌௜ െ .ሻݔ ሺ݌௜ െ ሻ൯ݔ
ଶ
ൌ 4ሺ1 െ .ݔ  ௜ሻଶ , as required.  Expanding this, and using݌

the coordinates of ܺ and those of   ௜ܲ   that have been found, 

  ∑ ሺܺ ௜ܲሻସ ൌ	
ସ
௜ୀଵ 16 ൅ 4ቆݖଶ ൅ ቀଶ√ଶ

ଷ
ݔ െ

ଵ

ଷ
ቁݖ

ଶ
൅ ቀെ√ଶ

ଷ
ݔ ൅ √ଶ

√ଷ
ݕ െ

ଵ

ଷ
ቁݖ

ଶ
൅ ቀെ√ଶ

ଷ
ݔ െ √ଶ

√ଷ
ݕ െ

ଵ

ଷ
ቁݖ

ଶ
ቇ 

ൌ 16 ൅ 4 ቀ
ସ

ଷ
ଶݔ ൅

ସ

ଷ
ଶݕ ൅

ସ

ଷ
ଶቁݖ ൌ

଺ସ

ଷ
  which is sufficient. 

4.   The initial result is obtained by expanding the brackets and expressing the exponentials in 

trigonometric form.   The (2n)th roots of ‐1 are  ݁௜
మ೘శభ
మ೙

గ ,  െ݊ ൑ ݉ ൑ ݊ െ 1 , which lead to the 
factors of  ݖଶ௡ ൅ 1  and these paired using the initial result give the required result.  Part (i) follows 
directly from substituting  ݖ ൌ ݅  in the previous result, and as n is even,  ݖଶ௡ ൅ 1 ൌ 2 .  Using the 
given factorisation in part (ii), the general result can be simplified by the factor 

ଶݖ   െ ݖ2 cos
௡

ଶ௡
ߨ ൅ 1 ൌ ଶݖ ൅ 1.  Again substituting  ݖ ൌ ݅  , and that  cos

ଶ௡ି௥

ଶ௡
ߨ ൌ 	െ cos

௥

ଶ௡
 gives ߨ

the evaluation required. 



5.  Writing  ݍ௡ܰ  as  ݍݍ௡ିଵܰ  , and employing the permitted assumption, as  ݌ and ݍ  are 
coprime, ݌  divides  ݍ௡ିଵܰ .  Repetitions of this argument imply finally that  ݌  divides  ܰ  .  Letting  
ܰ ൌ ௡ܳଵݍ  , ଵܳ݌ ൌ ܰ  ௡ିଵ .  Continuing this argument similarly gives the result݌ ൌ  ௡ . As a݌݇

consequence,  ݍ௡݇ ൌ 1, and thus  ݍ  and  ݇ must both be  1 .  Thus if  √ܰ
೙ ൌ

௣

௤
  where  ݌ and ݍ  are 

coprime, it is rational and can be written in lowest terms,  then  ݍ௡ܰ ൌ ݍ  ௡  and so݌ ൌ 1 and thus   

√ܰ
೙

  is an integer.  Otherwise, √ܰ
೙

  cannot be written as  
௣

௤
, that is, it is irrational. 

  For (ii), using the same logic as in part (i), as ܾ௔  divides  ܽ௔݀௕ ,  ܾ௔  divides  ݀௕, so  
݀௕ ൌ ܾ݇௔, for some  ݇ . Likewise,  ܽ௔ ൌ ݇′ܿ௕, for some integer  ݇′ , and thus ݇′݇ ൌ 1 ,  
so  ݇ ൌ ݇ᇱ ൌ 1 , and ݀௕ ൌ ܾ௔ .  If   ݌  is a prime factor of  ݀ , then  ݌  divides  ݀௕ , and so  ܾ௔  too.  
Writing  ܾ௔ ൌ ܾܾ௔ିଵ , using the logic of the very first part of the question, if  ݌  does not divide  ܾ , ݌  
divides  ܾ௔ିଵ, and repetition of this argument leads to a contradiction.  So ݌  is a prime factor of  ܾ . 

that divides  ݀௕  ݌  ௡௔ is the highest power of݌  ௠௕  and݌ ൌ ܾ௔  .  So  ܾ݉ ൌ ݊ܽ , and  ܾ ൌ
௡௔

௠
 .  So  ݌௡  

divides  ݊ܽ , but as ܽ and ܾ  are coprime,  ݌௡  divides  ݊  and thus  ݌௡ ൑ ݊ .  By the given result, this 

means  ݌ ൌ 1 , and as  ܾ  is only divisible by  1 ,  ܾ ൌ 1 .  If  ݎ  is a positive rational  
௔

௕
 , such that  

௥ݎ ൌ
௖

ௗ
  is rational, then  ܽ௔݀௕ ൌ ܾ௔ܿ௕  so  ܾ ൌ 1 and   ݎ  is a positive integer. 

 

6.    The opening result is the triangle inequality applied to OW, OZ, and WZ where OW and OZ 

are represented by the complex numbers w and z.   

Part (i) relies on using  |ݖ െ ଶ|ݓ ൌ ሺݖ െ ݖሻሺݓ െ ݖሻ∗ , ሺݓ െ ∗ሻݓ ൌ ሺݖ∗ െ |ݓݖ| , ሻ∗ݓ ൌ  and ,	|ݓ|	|ݖ|
substituting  ݖݓ∗ ൅ ∗ݓݖ ൌ ሺܧ െ  ሻ .  Having obtained the desired equation , the reality of E is|ݓݖ|2
apparent from the reality of the other terms and its non‐negativity is obtained from the opening 

result of the question.  Part (ii) relies on the same principles as part (i). 

The inequality can be most easily obtained by squaring it, and substituting for both numerator and 

denominator on the left hand side using parts (i) and (ii), and algebraic rearrangement leads to  

ሺ1ܧ െ ଶሻሺ1|ݖ| െ ଶሻ|ݓ| ൒ 0 which is certainly true.  The argument is fully reversible as |ݖ| ൐ 1 , and  
|ݓ| ൐ |∗ݓݖ| , 1 ൐ 1, and so 1 െ ∗ݓݖ ് 0 so the division is permissible, and the square rooting of 

the inequality causes no problem as the quantities are positive.  The working follows identically if 

|ݖ| ൏ 1 , and  |ݓ| ൏ 1 . 
 

7.  As  
ௗா

ௗ௫
ൌ 2	

ௗ௬

ௗ௫
	ቀ
ௗమ௬

ௗ௫మ
൅	ݕଷቁ  is zero for all  ܧ , ݔሺݔሻ is constant, and  ܧሺݔሻ ൌ 	

ଵ

ଶ
  using the 

initial conditions.  The deduction follows from the non‐negativity of  ቀ
ௗ௬

ௗ௫
ቁ
ଶ
 .  In part (ii), it can be 

shown that  
ௗா

ௗ௫
ൌ െ2ݔ	 ቀ

ௗ௩

ௗ௫
ቁ
ଶ
൑ 0  for  ݔ ൒ 0,  and as initially  ܧሺݔሻ ൌ 	

ଵ଴

ଷ
 , the deduction for  

cosh   ሻ relies onݔሺܧ  ሻ follows in the same way as that in part (i).  In part (iii), the choice ofݔሺݒ

ݓሺ׬2 coshݓ ൅ 2 sinhݓሻ݀ݓ  so  ܧሺݔሻ ൌ ቀௗ௪
ௗ௫
ቁ
ଶ
൅ 2	ሺݓ sinhݓ ൅ coshݓሻ .  Then  

 
ௗா

ௗ௫
	ൌ െ2 ቀ

ௗ௪

ௗ௫
ቁ
ଶ
ሺ5 cosh ݔ െ 4 sinh ݔ െ 3ሻ ൌ െ2 ቀ

ௗ௪

ௗ௫
ቁ
ଶ 	௘షೣ

ଶ
	ሺ݁௫ െ 3ሻଶ ,  and initially  ܧሺݔሻ ൌ 	

ହ

ଶ
 .  

The final result can be deduced as in the previous parts,  with the additional consideration that  

ݓ sinhݓ ൒ 0 . 
 

8.  The sum is evaluated by recognising that it is a geometric progression with common ratio 

݁ଶ௜గ ௡⁄   which may be summed using the standard formula and as  1 െ ݁ଶ௜గ ௡⁄ ് 0 , the denominator 



is non‐zero so the sum is zero.  By simple trigonometry,  ݏ ൌ ݀ െ ݎ cos ݎ  As  . ߠ ൌ ݎ  , ݏ݇ ൌ
௞ௗ

ଵା௞ ୡ୭ୱఏ
 .  

Thus   ௝݈ ൌ 	
௞ௗ

ଵା௞ ୡ୭ୱఏ
൅

௞ௗ

ଵା௞ ୡ୭ୱሺఏାగሻ
   where  ߠ ൌ ߙ ൅ ሺ݆ െ 1ሻ ߨ ݊⁄  .  Simplifying,   ௝݈ ൌ

ଶ௞ௗ

ଵି௞మ ୡ୭ୱమ ఏ
 .  The 

summation of the reciprocals of this expression is simply found using a double angle formula and 

then by expressing  the trigonometric terms as the real part of the sum at the start of the question. 

 

9.  The volume is obtained as a volume of revolution  ܸ ൌ ׬ ሺܴଶߨ െ ݐଶሻ݀ݐ
ோ
௫   which gives the 

result.  Similarly, Newton’s 2nd law gives  
ସ

ଷ
ሷ	ݔ	௦ߩ	ଷܴ	ߨ	 ൌ ݃ߩܸ	 െ

ସ

ଷ
 ௦݃  which simplifies to theߩ	ଷܴ	ߨ	

required result.  Substituting  ݔ ൌ
ଵ

ଶ
ܴ when  ݔሷ ൌ 0  gives  ߩ௦ ൌ 	

ହ

ଷଶ
ݔ  Substituting  . ߩ	 ൌ

ଵ

ଶ
ܴ ൅   ݕ

yields  
ହ

଼
	ܴଷ	ݕ	ሷ ൌ ݃ ቀെ

ଽ

ସ
ܴଶݕ ൅

ଷ

ଶ
ଶݕܴ	 ൅   this approximates to SHM with period  ݕ ଷቁ , so for smallݕ

గ

ଷ
ට
ଵ଴ோ

௚
   . 

 

10.  The initial result can be obtained in a number of different ways, but probably use of the 

parallel axes rule is the simplest.  Conserving angular momentum about P,   

ሺܽݑ݉ ൅ ሻݔ ൌ ሺܽݒ݉ ൅ ሻݔ ൅
ଵ

ଷ
ሺܽଶܯ	 ൅  ,is the velocity of the particle after impact  ݒ  ଶሻ߱   whereݔ3

and  ߱  is the angular velocity of the beam after the impact, and by Newton’s experimental law of 

impact  ሺܽ ൅ ሻ߱ݔ െ ݒ ൌ  between these two equations gives the quoted ݒ  Eliminating  .ݑ݁

expression for  ߱ .  Substituting  ݉ ൌ  , ߱  for maximum , ܯ2
ௗఠ

ௗ௫
ൌ 0 .  This gives a quadratic 

equation, with solutions ݔ ൌ െ
ଵ

ଷ
	ܽ  and  ݔ ൌ െ

ହ

ଷ
	ܽ .  The latter is not feasible and the former can be 

shown to generate a maximum which equates to the given result. 

 

11.  As the distance from the vertex to the centre of the equilateral triangle is  ܽ , the extended 

length of each spring is  
௔

ୡ୭ୱఏ
  giving the tension in each as  ݇݉݃

ቀ
ೌ

ౙ౥౩ഇ
ି௔ቁ

௔
  which simplifies to the 

given result.  Resolving vertically  3ܶ sin ߠ ൌ 3݉݃ , and using the result for  ܶ , substituting  ߠ ൌ
గ

଺
 , 

and rationalising the denominator gives the required value for  ݇ .  Conserving energy, when  ߠ ൌ
గ

ଷ
 , 

gravitational potential energy is  െ3݉݃ܽ tan
గ

ଷ
 , elastic potential energy is  

ଷ

ଶ
݇݉݃

ቆ
ೌ

ౙ౥౩
ഏ
య
ି௔ቇ

మ

௔
ൌ

ଷ

ଶ
݇݉݃ܽ ൬

ଵ

ୡ୭ୱ
ഏ
య

െ 1൰
ଶ
, whereas when  ߠ ൌ

గ

଺
 , gravitational potential energy is  െ3݉݃ܽ tan

గ

଺
 , elastic 

potential energy is  
ଷ

ଶ
݇݉݃ܽ ൬

ଵ

ୡ୭ୱ
ഏ
ల

െ 1൰
ଶ
, and kinetic energy is  

ଷ

ଶ
	ܸ݉ଶ  hence giving  ܸଶ . 

12.  ܲሺ ଵܺ ൌ 1ሻ ൌ
௔

௡
 , so  ܧሺ ଵܺሻ ൌ

௔

௡
 .  There are  

௡!

௔!௕!
  arrangements of the As and Bs, and the 

number of arrangements with a B in the ሺ݇ െ 1ሻ  th place and an A in the ݇ th place is 
ሺ௡ିଶሻ!

ሺ௔ିଵሻ!ሺ௕ିଵሻ!
 , 

so  ܲሺܺ௞ ൌ 1ሻ ൌ
௔௕

௡ሺ௡ିଵሻ
  for  2 ൑ ݇ ൑ ݊ , and  ܧሺ ௜ܺሻ ൌ

௔௕

௡ሺ௡ିଵሻ
  if  ݅ ് 1 .  These combine to give  

   .ሺܵሻ  correctlyܧ



ଵܺ ௝ܺ ൌ 1  only if the first letter is an A, the ሺ݆ െ 1ሻ th letter is a B, and the ݆ th letter is an A.  This 

has probability  
ሺ௡ିଷሻ!

ሺ௔ିଶሻ!ሺ௕ିଵሻ!
	
௡!

௔!௕!
ൗ   giving  ܧ൫ ଵܺ ௝ܺ൯ correctly.  

  ௜ܺ ௝ܺ ൌ 1  only if the ሺ݅ െ 1ሻ th letter is a B, and the ݅ th letter is an A, the ሺ݆ െ 1ሻ th letter is a B, and 

the ݆ th letter is an A which has probability  
ሺ௡ିସሻ!

ሺ௔ିଶሻ!ሺ௕ିଶሻ!
	
௡!

௔!௕!
ൗ   so ܧ൫ ௜ܺ ௝ܺ൯ ൌ

௔ሺ௔ିଵሻ௕ሺ௕ିଵሻ

௡ሺ௡ିଵሻሺ௡ିଶሻሺ௡ିଷሻ
  , and 

thus  ∑ ൫ܧ ௜ܺ ௝ܺ൯
௡
௝ୀ௜ାଶ ൌ ሺ݊ െ ݅ െ 1ሻ

௔ሺ௔ିଵሻ௕ሺ௕ିଵሻ

௡ሺ௡ିଵሻሺ௡ିଶሻሺ௡ିଷሻ
  and so  

  	∑ ൫∑ ൫ܧ ௜ܺ ௝ܺ൯
௡
௝ୀ௜ାଶ ൯௡ିଶ

௜ୀଶ ൌ ∑ ቆሺ݊ െ ݅ െ 1ሻ
௔ሺ௔ିଵሻ௕ሺ௕ିଵሻ

௡ሺ௡ିଵሻሺ௡ିଶሻሺ௡ିଷሻ
ቇ௡ିଶ

௜ୀଶ   which yields the required result. 

ܵଶ ൌ ∑ ௜ܺ
ଶ௡

௜ୀଵ ൅ ∑ ∑ 2 ௜ܺ
௡
௝ୀ௜ାଵ ௝ܺ

௡ିଵ
௜ୀଵ   so   ܧሺܵଶሻ ൌ

௔ሺ௕ାଵሻ

௡
൅

௔ሺ௔ିଵሻ௕ሺ௕ାଵሻ

௡ሺ௡ିଵሻ
  which can be used to 

obtain  ܸܽݎሺܵሻ  correctly. 

13.  integrating  0 ൑ ݂ሺݐሻ ൑  gives the result of (a) (i), and ݔ  between limits of 0 and ܯ
integrating the left hand side by parts yields part (ii).  As  ݇ܨሺݕሻ݂ሺݕሻ is a probability density function, 

׬ ݇
ଵ
଴ ݕሻ݀ݕሻ݂ሺݕሺܨ ൌ 1 , which can be evaluated using the result of (a) (ii) with  2݃ሺݔሻ ൌ ݇ and so  

݇ ൌ ሺܻ௡ሻܧ   . 2 ൌ ׬ ௡ݕ
ଵ
଴ ݕሻ݀ݕሻ݂ሺݕሺܨ2 ൑ ׬ ௡ݕ

ଵ
଴ ݕሻ݀ݕሺ݂ݕܯ2 ൌ   , ௡ାଵ  and using (a) (ii)ߤܯ2

ሺܻ௡ሻܧ ൌ ׬ ௡ݕ
ଵ
଴ ݕሻ݀ݕሻ݂ሺݕሺܨ2 ൌ 1 െ ݊ ׬ ሻ൯ݕሺܨ௡ିଵ൫ݕ

ଶ
ݕ݀

ଵ
଴  , as 

׬ ሻ൯ݕሺܨ௡ିଵ൫ݕ
ଶ
ݕ݀ ൑

ଵ
଴ ׬ ݕܯ௡ିଵݕ

ଵ
଴ ݕሻ݀ݕሺܨ ൌ ׬ܯ ௡ݕ

ଵ
଴   integration by parts gives , ݕሻ݀ݕሺܨ

׬ ௡ݕ
ଵ
଴ ݕሻ݀ݕሺܨ ൌ

ଵ

௡ାଵ
െ

ଵ

௡ାଵ
  ௡ାଵ .  Part (iii) is derived from part (ii) by rearrangingߤ

1 ൅
௡ெ

௡ାଵ
௡ାଵߤ െ

௡ெ

௡ାଵ
൑ ݊  ௡ାଵ  the subject, then translatingߤ  ௡ାଵ  and makingߤܯ2 ൅ 1  to  ݊ . 

 



	

	

	


